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ABSTRACT: Over the past decade, there has been a rapid increase in the study of using artificial intelligence (AI) to 

improve the quality of life of individuals with disabilities. Therefore, the study aims to investigate the effect of a 6-

week AI-generated core stability training program on balance and flatfoot in blind female students. This quasi-exper-

imental study selected 30 female students aged 9-12 years with flatfoot in Tehran City, dividing them into two groups: 

one for experimental (N = 15) and another for control (N = 15).  The experimental groups had six weeks of AI-based 

intervention with three sessions per week. During this period, the control group engaged in the routine activities of 

the physical education class. The navicular drop index and Y balance test were done as pre-posttest, respectively. The 

Covariance (ANCOVA) was used for inferential statistics. Data analysis was conducted at a significance level of 95% 

with an alpha level less than or equal to 0.05. The findings showed that there was a significant difference between the 

two groups in the scores of the Y balance test (p<0.035) and the navicular drop test (p<0.001), even when the pre-test 

effect was taken into account (covariate). By leveraging AI to design tailored exercise regimens, practitioners can 

enhance postural control and musculoskeletal health in visually impaired individuals. These results underscore the 

potential of AI-assisted rehabilitation strategies in special education settings, highlighting the need for further research 

to optimize program parameters and expand their applicability across diverse populations. 
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1 Introduction 

Visual impairments (VI) encompass a wide range of vision problems, from low vision to complete 

blindness, caused by various factors including hereditary conditions, trauma, and eye diseases [1]. Accord-

ing to the WHO, visual impairment is one of the most common health conditions, affecting nearly one-sixth 

of the world's population [2]. Vision is crucial for maintaining physical posture and balance, and its disrup-

tion can lead to improper movement patterns and postural abnormalities, which manifest in VI individuals 

as muscle weakness, joint deformities, and balance issues, ultimately causing various physical problems 
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[3]. The crucial role of balance in motor performance and injury prevention among VI individuals is in-

creasingly recognized, as they rely on proprioception to compensate for the lack of visual input [4]. In VI 

individuals, the absence of visual input impairs body position awareness, forcing reliance on other senses, 

which disrupts balance and alters dynamic movement mechanics like walking [5-7]. Imbalance and the 

inability to maintain proper body posture may lead to inappropriate pressure on the feet, resulting in the 

development of flatfoot [8, 9]. In a study, it was shown that individuals with flatfoot have more difficulty 

maintaining their balance compared to those with normal foot arches [10]. In a systematic review, it was 

demonstrated that core stability has a direct relationship with maintaining balance [11]. In another study, 

Daneshmandi et al., (2021) demonstrated that core stability exercises have a significant impact on improv-

ing both dynamic and static balance, as well as walking speed in individuals who are blind [12].  

AI is transforming the field of sports medicine and can aid in mass personalization and improving the 

outcomes of personalized rehabilitation protocols and injury prevention strategies [13]. AI-driven exercise 

prescription, using neural networks and logistic regression, tailors training programs to user needs and is 

expanding in the fitness domain [14]. Furthermore, findings from previous studies indicate that Ai has been 

effective in promoting physical activity among various populations, including children, adolescents, adults, 

the elderly, and individuals with disabilities [15, 16]. Further validation in real-world settings is essential, 

as findings indicate that AI technology, particularly GPT-4, can generate safe exercise routines [17].  

Despite the well-documented role of core stability in enhancing balance and addressing musculoskel-

etal conditions such as flatfoot, research on AI-generated training programs remains scarce. Most existing 

studies focus on traditional or therapist-guided interventions, with limited exploration of AI-driven exercise 

prescriptions, particularly for individuals with visual impairments. Given that blind individuals rely heavily 

on proprioception and other sensory inputs for postural control, the effectiveness of AI-generated core sta-

bility programs in this population remains unclear. Moreover, such interventions' safety, adaptability, and 

long-term impact have not been thoroughly examined. This gap underscores the need for rigorous research 

to assess the feasibility and efficacy of AI-generated training programs in improving balance and mitigating 

flatfoot in blind female students. 

2 Methods 

2.1 Participants 

 The present study was quasi-experimental and conducted in the field. We purposefully selected 30 

female students aged 9-12 years with flatfoot in Tehran City, dividing them into two groups: one for exper-

imental (N = 15) and another for control (N = 15). For this purpose, by visiting schools and screening 

students from the 4th to 6th grades of primary school, individuals with flatfoot were initially identified 

using observational methods and the Chippaux-Smirak index [18]. The study's inclusion criteria included 

being 9-12 years old, having a navicular drop of more than 10 millimeters, having a visual impairment 

based on medical records, and not participating in parallel training and therapeutic programs. The exclusion 

criteria were a history of injury, fracture, or surgery in the lower extremities, non-participation in two con-

secutive training sessions, and engaging in activities outside the participants' training program. In the first 

step, the demographic information of the samples was recorded. Navicular drop test, and Y balance test 

were conducted on the subjects, respectively, and the data of these tests were recorded as a pre-test for each 

individual. Then, the experimental group did the selected AI-based core stability exercises for 6 weeks, but 

the control group engaged in the routine activities of the physical education class. After 6 weeks, all the 

tests were repeated, and the results were recorded as post-test data. Additionally, for ethical considerations 
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based on the Declaration of Helsinki, all stages of the study were discussed with the subjects. Then, written 

informed consent was obtained from their parents as participants were under legal age. Also, parents were 

told that in case of any issues during the tests, all necessary actions would be taken by the examiner, a sports 

science expert studying for a master's degree in kinesiology. The subjects were instructed on how to perform 

each test. All steps were explained verbally to the participants. Before starting the tests, the procedure was 

presented to them verbally. Also, all measurements were performed three times, and the mean average of 

each variable taken was counted as study data.  

2.2 Measurement and Tools  

Navicular Drop index 

First, the navicular tuberosity was identified. Then, the navicular bone height was measured while the 

subtalar joint was in a neutral position, with the participant primarily bearing weight on the opposite leg. 

Next, the participant was instructed to distribute weight on both feet evenly, and the navicular height was 

reassessed. The difference between the two measurements represented the navicular drop. Participants with 

a navicular drop exceeding 10 mm were categorized as having flatfoot. The measurement was repeated 

three times for each participant to ensure accuracy, and the average value was recorded for analysis. This 

test's intra-rater and inter-rater reliability has been demonstrated to range from 0.73 to 0.96 [19].  

Y balance Test  

The Y-Balance Test (YBT) is an objective measure used to assess balance during functional move-

ment. Participants position themselves at the center of the YBT apparatus and are instructed to extend their 

foot as far as possible while maintaining contact with the designated markers. After each reach, they return 

to the starting position. This process is performed in three directions: anterior, posterolateral, and postero-

medial, and is conducted separately for each leg. The measuring scale's farthest point of contact—typically 

the toe—represents the maximum reach distance. Attempts are considered unsuccessful if balance is lost, 

the foot is placed on the measurement indicator, or the measuring device is struck. The composite score is 

calculated by summing the distances reached in all three directions, dividing by three times the participant’s 

leg length, and multiplying by 100, ensuring a standardized and objective assessment. Limb length is meas-

ured using tape, with the participant in a supine position, from the anterior superior iliac spine to the most 

distal point of the medial malleolus [20]. The person's preferred leg for kicking a ball is evaluated to identify 

the dominant lower limb. Also, YBT has excellent inter-rater and test-retest reliability [21]. 

Implementation of the training programs 

A day after the pre-testing, the implementation of the respective training programs for the experimental 

group commenced. The experimental group was administered the 6-week Ai-generated core stability train-

ing program, which was created using Scopus Ai. The prompt includes the specifics of the training program 

using the principles of frequency, intensity, time, and type. Below is the exact prompt inputted in the Scopus 

AI. It should be noted that the training sessions were 30–40 minutes, including a warm-up (10 minutes), 

core stability exercise (20 minutes), and a cool-down (10 minutes). Moreover, we provided clear, concise 

verbal instructions for each movement and used tactile cues to guide body positioning. Also, we ensured a 

clutter-free space to prevent falls and used a non-slip mat for stability. 

Prompt: Write an 6-week core stabilty exercise program for a blind student who is 9-12 years, with 

flatfoot (having a navicular drop of more than 10 millimeters) based on FITT principles (Frequency, Inten-

sity, Time, and Type) for optimal results. Please ensure the program includes specific exercises targeting 
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the identified postural issues and adheres to the FITT principles. Additionally, provide explanations for a 

better understanding of each exercise, emphasizing proper form and technique. 

 Table 1. Table 1. Ai-generated core stability training program 

Week 

 
 

Exercise Type Frequency Intensity 
Time 

(Reps/Sets) 

Instructional 

Cues & 

Considerations 

Week 1-2 

(Foundation 

Phase: 

Awareness & 

Strength) 

Standing 

Heel Raises 

Foot Arch & 

Lower Limb 

Strength 

3x/week Moderate 
15 reps × 

2 sets 

“Push through 

your toes and 

lower slowly.” 

Glute 

Bridge 

 

Core & Glute 

Strength 

 

3x/week 

 

Low to 

Moderate 

 

12 reps × 

2-3 sets 

“Lift your hips 

while squeezing 

your glutes.” 

Seated Ball 

Squeeze 

 

Inner Thigh & 

Core 

Activation 

 

3x/week 

 

Low 

 

10 reps × 

2 sets 

“Gently squeeze 

the ball and 

hold.” 

Week 3-4 

(Progression 

Phase: 

Stability & 

Coordination) 

Bird Dog 

(Quadruped 

Arm/Leg 

Raises) 

Core 

Coordination 

& Balance 

3x/week Moderate 

10 

reps/side 

× 3 sets 

“Keep your back 

straight and 

extend opposite 

arm and leg.” 

Toe 

Walking & 

Heel 

Walking 

Foot Arch 

Strength & 

Postural 

Control 

3x/week 
Low to 

Moderate 

5 steps on 

toes, 5 on 

heels × 3 

rounds 

“Feel the ground 

under your toes 

and heels.” 

Seated 

Marching 

on Stability 

Ball 

Dynamic Core 

Engagement 
3x/week Moderate 

12 

reps/side 

× 3 sets 

“March in place 

while keeping 

balance.” 

Week 5-6 

(Advanced 

Stability & 

Functional 

Strength 

Phase) 

 
 

Side-Lying 

Leg Lifts 

Hip Stabilizer 

Strength 
3x/week Moderate 

12 

reps/side 

× 3 sets 

“Raise your leg 

like reaching for 

something.” 

Standing 

Balance on 

Foam Pad 

Proprioception 

& Core 

Stability 

3x/week Moderate 
15 sec/leg 

× 2 sets 

“Maintain 

balance on one 

leg, focus on 

control.” 

Plank 

(Modified 

or Full) 

Core 

Endurance & 

Strength 

3-4x/week Moderate 
15-30 sec 

× 2-3 sets 

“Keep your body 

straight like a 

board.” 
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2.4 Statistical Analysis  

This research used descriptive statistics to describe the variables and inferential statistics for data anal-

ysis. If the data were normally distributed, the Covariance (ANCOVA) was used for inferential statistics. 

Data analysis was conducted at a significance level of 95% with an alpha level less than or equal to 0.05 

using SPSS software version 27. 

3 Results  

The Shapiro-Wilk test results indicated that the data followed a normal distribution. Table 1 displays 

the demographic characteristics of participants in both groups.  

Table 2. Demographic characteristics of participants 

Variable  Groups  Mean±SD P-value 

Age (years) 
Experimental 10.49±1.81 

0.57 
Control  10.85±2.08 

Height (cm) 
Experimental 146.93±8.17 

0.37 
Control 145.25±1.50 

Weight (kg) 
Experimental 43.13±8.39 

0.89 
Control 44.12±4.13 

BMI (kg/m2) 
Experimental 20.66±4.55 

0.59 
Control 20.36±3.44 

Table 3. The Covariance (ANCOVA) test results 

Variable Stage Mean±SD F DF ETA SQUARED P-value 

Navicular 

drop test 

Pre-test 14.25±2.25 595.041 1 0.938 0.001* 

Post-test 8.96±2.52 

Y balance 

test 

Pre-test 64.72±10.60 5.273 1 0.250 0.035* 

Post-test 75.63±10.57 

* Indicating a significant change from pre-test to post-test 

Table 3 found that there was a significant difference between the two groups in the scores of the Y 

balance test (p<0.035) and the navicular drop test (p<0.001), even when the pre-test effect was taken into 

account (covariate). 

5. Discussion and Conclusion 

This study found that AI-generated training program was effective among blind students’ scores in flatfoot 

and balance. Rapid AI technology advancement presents a valuable opportunity to enhance the quality of 

life for individuals with disabilities. Beyond their primary goal of supporting those with disabilities, AI 
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systems also promise to mitigate certain disabling conditions. Regarding this matter, a study investigating 

the role of AI in rehabilitation targeting the participation of children with disabilities showed AI can be 

potentially used in pediatric rehabilitation [22]. Another study by Almufareh et al., (2023) demonstrated 

that AI-based applications, including real-time captioning, sign language translation, robotic assistance, 

virtual reality, and brain–computer interfaces, are transformative tools that promote inclusivity and inde-

pendence for individuals with intellectual disabilities [23]. Maintaining the interpretability and transparency 

of AI model decisions is essential in the healthcare sector. This is particularly important as medical profes-

sionals must not only rely on AI-generated outcomes but also clearly understand the reasoning behind them. 

Moreover, after an AI model is designed with a strong emphasis on transparency and interpretability, it can 

be incorporated into healthcare systems and digital platforms, including telemedicine services and mobile 

health applications [24]. Such integrations expand the accessibility of AI-powered healthcare solutions, 

benefiting medical professionals, caregivers, and patients alike [25]. Moreover, AI-driven robotic systems 

play a crucial role in therapeutic and educational settings for children with disabilities by enhancing social 

interaction, communication, and engagement through personalized and adaptive interventions [26]. A study 

highlighted the improvements in autistic children's attention, response to social cues, and willingness to 

interact with both the robot and their peers [27]. Another study indicated that a robot-based play-drama 

intervention can enhance the joint attention and play behaviors of children with autism [28]. Furthermore, 

developmental children demonstrated increased communication, turn-taking, and cooperative play when 

interacting with the robotic system [29]. The findings highlight the transformative role of AI-powered as-

sistive robotics in improving therapeutic and educational outcomes for children with disabilities. Robotic 

systems can deliver tailored and engaging learning experiences through AI-driven adaptive interactions, 

promoting social and cognitive growth [30]. This aligns with the expanding integration of AI in assistive 

technologies, where intelligent systems play a crucial role in advancing inclusive education and rehabilita-

tion initiatives [31]. The findings of this study have significant implications for integrating AI-driven train-

ing programs in adaptive physical education and rehabilitation. The demonstrated improvements in balance 

and flatfoot condition among blind female students suggest that AI-generated core stability exercises can 

serve as an effective, individualized, and scalable intervention. By leveraging AI to design tailored exercise 

regimens, practitioners can enhance postural control and musculoskeletal health in visually impaired indi-

viduals, ultimately promoting greater mobility and independence. These results underscore the potential of 

AI-assisted rehabilitation strategies in special education settings, highlighting the need for further research 

to optimize program parameters and expand their applicability across diverse populations.  

Limitations and Future Directions 

Despite the promising outcomes of this study, several limitations must be acknowledged. First, the sample 

size was relatively small, which may limit the generalizability of the findings to a broader population of 

blind female students. Additionally, the study focused on a short intervention period of six weeks, and the 

long-term effects of the AI-generated core stability training on balance and flatfoot correction remain un-

certain. Another limitation is the potential variability in individual responses to the training, as factors such 

as baseline physical fitness, muscle strength, and adherence to the program could influence the results. 

Furthermore, while AI-generated programs offer personalization, they may not fully account for nuanced 

biomechanical and sensory adaptations unique to visually impaired individuals. Future studies should fur-

ther incorporate larger sample sizes, extended follow-up periods, and comparisons with traditional rehabil-

itation methods to validate the efficacy and sustainability of AI-driven interventions. 
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